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Fig. 1. Screenshot of the NeuroTrace application visualizing one million semi-transparent streamlines using the VoxelBased rendering
method.

Abstract—NeuroTrace is a software application capable of reading, interpreting, and visualizing MRI tractography data. The application
will render one or more visually appealing three-dimensional models consisting of streamlines representing white matter tracts within
the human brain. It will provide tools for exploring and analyzing the visualization in real-time. NeuroTrace will provide a graphical user
interface as the main interface between the user and the application, in addition to keyboard shortcuts and mouse controls. A short
video teaser be seen at: https://www.youtube.com/watch?v=BaQmGj3dmsU

1 INTRODUCTION

Medical imaging is an important process in the medical field as it pro-
vides great insight into the human body, and it has become an essential
tool in clinical analysis and treatment. The datasets that are generated
during these processes are often extremely large as they attempt to map
out the complex structures of the body. The human brain is the most
intricate organ and, as such, requires very precise apparatus to accu-
rately map. Brain scanning is done using magnetic resonance imaging
(MRI). The resulting data can be processed to generate tractography
data, mapping the white matter tracts that partially make up the brain.
These datasets consist of connected points that form separate lines of
variable length and amount.

Tractography datasets can be very large and are challenging to inter-
actively visualize in real-time on a modern computer. A dataset may
consist of over a million lines that an application would have to display
while maintaining interactivity and supporting a number of desirable
tools that can interact with the data. Existing solutions are hard to use,
not performant, and/or visually unappealing.

We present NeuroTrace, an interactive MRI tractography data visual-
izer application. The software was developed to provide a performant,
more interactive, and more intuitive solution to tractography visual-
ization. Our objectives with this application are mainly focused on
visualization rather than scientific analysis, however it is intended to
support some essential analysis tools nonetheless. It aims to increase
the accessibility to, and enjoyment of, the exploration of tractography
data by improving ease-of-use and performance.

2 BACKGROUND AND RELATED WORK

The context of the problem is the field of medical imaging, specifically
the visualization of MRI tractography data or streamlines in general.
At the time of writing, numerous applications are being developed that
aim to deal with these datasets whether it be visualization, analysis, or
both. They are being used in the medical field but are still in the early
stages, as real-time software for datasets this large have only relatively
recently become feasible due to the advances in hardware capabilities.

Existing visualizers
There are several tools capable of visualizing and analyzing tracktogra-
phy data such as MRtrix3 [8], TrackVis [9] and FiberNavigator [2] [1].
Some more capabable of rendering large datasets then others. Each
providing different interaction tools. These tools are used as visual
references for our project.

3 PROBLEM DEFINITION

MRI tractography datasets are often large, potentially containing hun-
dreds of thousands to over a million lines. Due to their size it can be
difficult to render interactively.

We defined with our professor certain criteria we want to accomplish
during the project:

• Visualize large amount of diffusion MRI tractography data (.tck
data) in real-time.

• Provide interactivity such as camera movement (moving, rotating,
dragging and zooming)

• Visualizing the streamlines intersecting with an arbitrary sphere.

• Domain specific filters and tooling for analysis.

https://www.youtube.com/watch?v=BaQmGj3dmsU


• Multiple render methods (primitive, tubes, etc)

4 TOOLS

The software is written in the C# language and uses the .NET 7 runtime.
Window management, input, and rendering is handled using OpenTK,
which provides a thin wrapper around OpenGL. For the user interface
we decided on Dear ImGui, a widely used immediate-mode UI library.
The input data consists only of a set of streamlines, which are series of
three-dimensional points. This data is provided as TCK files, a format
that is commonly used for this purpose. The input data is interpreted as
described in Sect. 5.1, after which it is left open for further processing
by the numerous render methods described.

5 METHODS

In this section we describe the implementation regarding significant
parts of the application. Rendering methods are omitted because they
are described in their own section (Sect. 6). Before any visualization is
rendered, the data has to be interpreted and processed to achieve the
optimal performance for rendering and interactivity.

5.1 Reading tractography data
NeuroTrace currently only supports TCK data. We wrote our own
TCK reader to extract the metadata and streamline data. We support
Float32LE format as this was the only format we have encountered
in the B.A.T.M.A.N. [7] files and the assignment provided TCK data,
but the code can be easily extended to support other formats and other
file types. The raw data is processed into a set of streamlines, stored
contiguously in memory. After this processing, it is trivial to enumerate
the set and perform other processing steps depending on the selected
render method.

5.2 Data encoding
There are several existing solutions that encode streamlines to optimize
render performance allowing rendering of much larger datasets [6].
While this does increase render performance, it also increases the
preprocessing time by several magnitudes. In our experiments with
Fiblets [6], loading a new TCK file takes approximately three seconds
in NeuroTrace/MRtrix [8], while encoding can take multiple hours with
Fiblets. This would hinder workflow of users who wants to load a TCK
file and see a visualization to such a large degree that it would not be
worth any performance gains in rendering. For this reason we decided
against encoding tract data in NeuroTrace.

5.3 Voxel representation
The voxel service assigns each point in each streamline to a voxel of
arbitrary size. Every voxel contains information about the points that
intersect with it and the streamlines that they belong to. This data
structure is especially useful for spatial queries and the implementation
of many spatial optimizations. The intersection service uses this for
fast distance queries and VoxelBased rendering uses it in the mesh
generation algorithm.

Certain files do not have a set step size indicating the maximum
distance between streamline points. For these files we add interpolated
points to make sure voxels are not skipped. In practice we add very few
interpolated points as the voxels are much larger than distance between
streamline points.

5.4 Shape intersection filter
One core functionality we provide is a sphere intersection filter. This
allows the user to specify a 3D point and a radius indicating a sphere.
The software then renders the streamlines with different alpha values
allowing for transparency or completely hiding of intersecting or non-
intersecting streamlines. Filtering has great performance that works in
real-time on both small and large datasets (up to 1 million streamlines).

The implementations uses our voxel service and OpenGL ’Shader
Storage Buffers Objects’ [4]. Our voxel service allows us to quickly
query the relevant voxels for intersecting streamlines, drastically reduc-
ing the amount of streamlines that need to be checked. The resulting
intersection lines are passed by id to a Shader Storage Buffer. The

fragment shader has access to this ’flags’ buffer, and uses it give each
fragment the appropriate transparency value.

5.5 Bounds filter
We added a functionality to visualize a subsection of the brain using
two vectors indicating cuboid center position and size. Bounds work
on a point level, meaning it will mark all streamlines) points as either
enabled or disabled using the same ’flag’ system described in Sect. 5.4.

5.6 Multiple visualizations
NeuroTrace uses two central concepts, namely ’view’ and ’visualiza-
tion’. We define a visualization as an 3D environment. Each visual-
ization has its own loaded TCK data, color mapping, and rendering
method. Views render a visualization with a specific camera. Us-
ing these two concepts, users can easily render multiple tractography
datasets in the same visualization, render the environment from differ-
ent angles, side by side, etc. We provide camera tools such as ”camera
sync” to synchronize different cameras to allow for certain analysis.

5.7 Color mapping
NeuroTrace provides several color mapping options:

• Absolute streamline direction: Color vertices based on the abso-
lute line tangent direction.

• MatCap: Color mapping using material capture in the line tangent
direction or normal direction for tubes.

• Constant color: User selected color.

• Gradient: Random color per streamline based on user selected
colors.

• View based: Transparency per streamline point based on the
similarity of streamline tangent and the view direction, allowing
for viewing streamline segments going certain directions.

Color mapping works for all render methods and in combination with
intersection and bound filters.

6 RENDERING METHODS

The application is capable of visualizing the streamlines in different
ways, each offering its own advantages and disadvantages. These ren-
dering methods are useful in different contexts (analysis, photorealism,
etc.) and can be used simultaneously.

6.1 Primitive lines
The first rendering method we implemented is primitive line rendering.
This involved batching streamlines in batches using the OpenGL ’Lines’
primitive. Each batch consists of one mesh that is rendered in one
draw call. A batch can hold around sixteen million vertices therefore
drastically reducing the draw calls needed to render the entire set.
E.g. our reference file of one million lines with approximately one
hundred points per line can be rendered using seventy meshes. Utilizing
the depth buffer and OpenGL line thickness, this render method is
capable of accurately rendering an appealing visualization of any set of
streamlines. Drawbacks include the limited amount of streamlines that
can be drawn in real-time, and that accurate transparency is not feasible
because the streamlines need to be sorted.

6.2 Tube meshes
Rendering streamlines using tube meshes is not uncommon and quite
naı̈ve. This method involves generating a ”skin” mesh around the given
streamline given a profile shape. A profile shape is a 2D curve defined
by a series of points. This shape is extruded over the length of any
given 3D curve. In our implementation, the profile mesh is arbitrary
but it is set to an octagon.

The algorithm follows the given streamline and uses the precom-
puted tangent vector to generate the tube mesh. To minimise twist, a
smoothed tangent ts is used instead:



Fig. 2. A bundle of streamlines rendered using the tube mesh method
using a MatCap material

ts =
pt ·wp +nt ·wn

wp +wn
(1)

Where pt , wp are previous tangent and previous weight respectively,
and where nt , nw are next tangent and next weight respectively. The
tangent weight of a point corresponds to its distance to the current
point.

Next, for every point omitting the first and last, a set of vectors is
calculated that correspond to points of an octagon relative to the point.
The cross product of the smooth tangent and its rotation is taken to get
the normal vector. The normal vector is rotated and plotted eight times
(determined by the desired profile mesh resolution) to form an octagon.
Then, edges are formed between the recently created profile and the
previous one. This results in one continuous tube with an unnoticeable
amount of twist (Fig. 2). Notably, this algorithm does not address start
and end caps. This was purposefully omitted as it seemed insignificant
when rendering hundreds of thousands of streamlines.

There are few advantages to this render method, one of which is
versatility. Since this is a traditional mesh without any fancy tricks,
it is open to most traditional rendering techniques including lighting,
normal mapping, PBR, MatCaps, etc. Another advantage is that it
is the most convincing visualisation in the application because it’s
a volumetric shape as opposed to infinitely thin lines, or thick lines
without surface normals.

Disadvantages are plentiful. To start with, this method uses more
video memory and processing power than other methods as the vertex
count per point is greatly increased. This results in lower overall
performance when compared to primitives. Secondly, a similar effect
can be achieved with imposter tube rendering – as seen in [5] – which
devalues the naı̈ve implementation further.

6.3 VoxelBased
6.3.1 Motivation
The primitive render method has great performance and was easy to
implement; however, it has one major issue: transparency. We were
not able to support transparency while using the depth buffer. Since
transparency is necessary for other functionality of NeuroTrace, we
made it a priority to find a solution.

6.3.2 Existing solutions
We researched existing solutions to solve transparency. The main
solution for transparency is rendering transparent objects from back
to front. This involves sorting all transparent objects based on their
distance to the camera. However, this is not feasible in our context
for two reasons. Firstly, streamlines have varied distances from the
camera, which makes them difficult to sort. Secondly, as we have an

Fig. 3. A slice of voxels, each group of line segments is rendered as one
mesh. Voxels are rendered from back to front for correct transparency.

interactive camera and large datasets (1 million lines / 150 million
points), ordering would not be performant enough to achieve real-time
rendering.

There are order-independent transparency (OIT) solutions. After
researching, we concluded that these solutions do not fit our context.
Certain solutions required multiple render passes, which would not
work in this context. Rendering large datasets with millions of points
using the primitive render method was already difficult to do in real-
time, and we could not afford to render them multiple times. Other
solutions required a very specific, complex render pipeline that pre-
cluded us from using certain OpenGL functionality we used for other
functionalities and did not want to give up.

6.3.3 Algorithm
We came up with an rendering algorithm we call VoxelBased rendering.
Algorithm 1 shows a simplified pseudocode version of the algorithm.
The idea is to divide the streamline data into voxels. Each voxel is a 3D
cube with a fixed position and size. Per voxel, we generate one mesh
that displays all the streamline segments that pass through the voxel. We
do this once per TCK file as a preprocessing step. After preprocessing,
we simply sort the voxels back to front every frame and render them
accordingly. This way we achieve semi-accurate transparency with
good performance without any complicated render pipelines. While
the idea behind this algorithm is quite simple; however, generating the
voxel meshes has some complications that need to be handled properly.

One issue is that using only the points inside the voxel will result
in broken streamlines. As a streamline passing through multiple vox-
els will have a missing line connecting the individual line segments
together, we resolve this by adding the next point in the streamline to
each line segment that does not hold the final streamline point. This
ensures that each line segment connects to the next line segment.

A different issue occurs when a streamline passes through multiple
voxels. Initially, we simply rendered line segments based on the sorted
points, but it caused incorrect lines to be rendered. Let’s say a line
has points 1,2,5,6 in voxel A and points 3,4 in voxel B. Rendering
lines based on sorted points will cause an incorrect line to be rendered
between points 2 and 5. To solve this issue, we added an additional
step that checks if the line segment points are always increasing by one.
If they are not, we either add a new point if the distance is exactly 2
(e.g., adding point 8 between 7 and 9), or we split the line segment into
multiple line segments if the distance is larger than 1.

Result
The result is a relatively accurate transparent rendering of streamlines as
seen in Fig. 4. The major issue is that the render order within voxels is
not safeguarded. This causes visual discrepancies when a high (> 0.9)
alpha value is used. In practice VoxelBased is used for transparent
rendering. With transparency the render order within voxels quickly



become irrelevant by the properties of transparency and blending. We
believe this is one of the best ways to render transparent objects for the
given context.

Algorithm 1 Voxel mesh generation algorithm
1: for each streamline in dataset do
2: for each point in streamline do
3: add point to the voxel the point is within
4: end for
5: end for
6:
7: for each voxel do
8: linesegments← voxel points grouped by line
9: for each linesegment in linesegments do

10: points← linesegment points sorted by ascending
11: for k = 0 to linesegment point count - 1 do
12: curPointIndex← line relative point index of k
13: nextPointIndex← line relative point index of k+1
14: if curPointIndex+1 is not nextPointIndex then
15: if curPointIndex+2 is nextPointIndex then
16: add point curPointIndex+2 in
17: between points k and k+1.
18: else
19: Replace linesegment entry in linesegment
20: with two new linesegments.
21: One with points 0..k and other
22: with points k+1..linesegment length
23: end if
24: end if
25: end for
26: end for
27: end for
28: for each segment in linesegments do
29: if segment does not contains the final streamline point then
30: nextPoint← max line segment point index + 1
31: Append nextPoint to segment
32: end if
33: end for
34:
35: vertices← new vertex list
36: indicies← new integer list
37: for each linesegment in linesegments do
38: for each point in linesegment do
39: Add point to vertices
40: end for
41: end for
42:
43: for each linesegment in linesegments do
44: for k = 0 to linesegment point count - 1 do
45: Add k to indicies
46: Add k+1 to indicies
47: end for
48: end for

7 RESULTS

Visual comparison between different applications with screenshots of
same camera. Performance comparison using the hardware described
in Appendix C.

8 DISCUSSION

We have met our initial objectives of rendering TCK data in real-time
and providing interaction tools. We believe our software is aesthetically
pleasing and it provides plenty of options for the user to configure the
visualisation to their desires. Our filtering and colouring tools, while
simple, are easy to use and very performant. Our user interface is
intuitive and simple, making the exploration of the MRI tractography

Fig. 4. Visual comparison between different transparency values of the
sift 1mio.tck B.A.T.M.A.N. [7] file. On the top is MRView [8] rendering with
lines render method. Bottom is our novel VoxelBased render method.
Note: MRview does not display the alpha value, so no direct comparison
could be made with same transparency values.

Table 1. TCK File Information

TCK File Lines Points
smallerSIFT 200k.tck 200k 4,671,775

sift 1mio.tck 1 million 23,290,802

data more accessible. We have received great feedback from both our
colleges and professor.

Our solution does fall short in performance. In most cases, rendering
takes longer than the existing solutions using similar render methods
(MRView Lines vs NeuroTrace Primitives). Additionally, loading data
takes a more time than other software. This is caused by the vox-
elization service which is necessary to speed up filtering tools and
VoxelBased rendering and our focus on adding new functionality with
limited the time we spent on optimization. However, we did optimize
the intersection service. We managed to make it work in real-time with
large datasets (sift 1mio). We are confident that if we spent more time
on render performance we could improved it considerably.

We made the conscious decision to focus on novel render techniques
and exploration instead of existing solutions for rendering massive
amounts of streamlines. Using more existing research would have
improved performance, but we focused on our own methods and ex-
ploration instead. This is not necessarily a negative, as it allowed us to
try creative techniques, but it has evidently impacted the final product
in some negative ways mainly having worse render performance than
existing visualization software.

9 FUTURE WORK

Our main area of focus for future work would be visual quality and
performance. There are many optimization techniques that can be
implemented. Most functionality have been implemented at a bare
bones level and can be expanded upon. For instance the intersection
service currently only has spheres, other shapes or inclusion/minus
combinations could be implemented.

There is no shortage of additional features can be implemented.
Examples include raymarched rendering using SDFs, lighting with
shadows, ambient occlusion – as described in [3] –, anti-aliasing, sub-
surface scattering (considering the visualisation subject matter), and
volumetric MRI scan rendering for improved contextual awareness.
Some of these are partially finished or at least work-in-progress. Unfor-

Table 2. Render performance compared to MRtrix3 [8] MRView visualizer

TCK File Renderer Load time Render time
smallerSIFT 200k MRView Lines < 1 sec 8.5 ms
smallerSIFT 200k Primitive (ours) 1.8 sec 7.3 ms
smallerSIFT 200k VoxelBased (ours) 3.4 sec 10.6 ms

sift 1mio MRView Lines 1.4 sec 15.6 ms
sift 1mio Primitive (ours) 9.8 sec 21.3 ms
sift 1mio VoxelBased (ours) 14.6 sec 47.6 ms



tunately, we could not implement these given the time constraint and
workload of other courses.

10 CONCLUSION

In conclusion, NeuroTrace is a promising solution that has achieved
what it was designed for, providing both impressive visual results and in-
teraction tools. There is room for improvement regarding performance
and ample opportunity for expansion.
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B CONTRIBUTIONS

We have worked together before and are aware of each others abilities.
Therefore we divided the project in two main goals in the first week.
Mestiez was responsible for the OpenGL context and general rendering,
while Besm was responsible for UI and interaction. After the fourth
week we changed responsibilities to both focus on more of the rendering
work. This division was not absolute as our contributions overlapped
and we helped each other where needed. We each worked about 16
hours a week on this project.

Besm’s contributions

• TCK file loader (10%)

• Dear ImGui integration (10%)

• Most of the user interface (10%)

• Camera options such as sync and lock (10%)

• General code architecture (service based with visualization ser-
vices and global services) (10%)

• Voxel service (5%)

• VoxelBased render method (25%)

• Intersection functionality (10%)

• Bounds functionality (5%)

• Colormapping options (5%)

Mestiez’ contributions

• OpenGL context including window, vertex attributes, meshes
(20%)

• Camera movement (5%)

• Shaders, materials, textures, rendertextures (20%)

• Primitive render method (10%)

• Tube render method (25%)

• MatCap (5%)

• Raymarching rendermethod (unfinished) (15%)

C HARDWARE

All performance evaluations were performed on a laptop with the
following system:

Evaluation system specifications
CPU Intel Core i7-9750H CPU @ 2.60GHz
GPU GeForce GTX 1650

Display 1920 × 1080
Memory 16 GB, 2400 MHz



GLOSSARY

real-time defined by a consistent update rate of at least 30Hz. 1, 2, 4,
6

streamline a set of connected points provided by an input file. 1, 2, 3,
6
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