
Voxlines: Streamline Transparency through
Voxelization and View-Dependent Line Orders

Besm Osman, Mestiez Pereira, Huub van de Wetering, and Maxime
Chamberland

Eindhoven University of Technology, Eindhoven, The Netherlands
{b.osman@student.,m.chamberland@}tue.nl

Abstract. As tractography datasets continue to grow in size, there is
a need for improved visualization methods that can capture structural
patterns occurring in large tractography datasets. Transparency is an
increasingly important aspect of finding these patterns in large datasets
but is inaccessible to tractography due to performance limitations. In
this paper, we propose a rendering method that achieves performant
rendering of transparent streamlines, allowing for exploration of deeper
brain structures interactively. The method achieves this through a novel
approximate order-independent transparency method that utilizes vox-
elization and caching view-dependent line orders per voxel. We compare
our transparency method with existing tractography visualization soft-
ware in terms of performance and the ability to capture deeper structures
in the dataset.

Keywords: Tractography · Visualization · Transparency · Streamlines

1 Introduction

Tractography datasets are growing larger, posing challenges for their visualiza-
tion in terms of performance and usability. Various methods have been developed
to address performance issues, such as removing colinear points or compress-
ing the dataset[5]. Existing tractography visualization tools like MRtrix3 [9]
and TrackVis [11] provide filtering options for visualizing different parts of the
dataset. Recently, transparency-based methods have emerged to improve usabil-
ity, such as applying varying transparency to each fiber based on orientation to
highlight underlying tissue configurations [8]. Transparency can play an impor-
tant role in tractography visualization by enabling exploration of deeper brain
structures. Transparency has been used to better convey the spatial relation-
ship between streamlines and surfaces that illustrate their anatomical context.
[7] However, existing tractography visualization software, utilize subpar trans-
parency methods due to performance constraints [4], limiting the benefits gained
from transparency.

1.1 Existing Transparency Methods

The basic approach to achieving transparency is by rendering the objects fur-
thest from the screen first, which requires sorting every translucent object when-

2 B. Osman et al.

ever the view changes. This method is suitable for visualization contexts with
a limited number of transparent objects or a fixed viewing direction. However,
this solution is not feasible for interactive tractography visualization. It is not
possible to determine a consistent sorting order for entire streamlines, since dif-
ferent parts of a streamline can be at varying distances from the view. Therefore,
sorting needs to be done at the level of individual line segments that make up
the streamlines. The scale of the tractography dataset makes the computational
cost of real-time sorting of line segments impractical. Hence, order-independent
methods are required to achieve tractography visualizations with transparency.
These techniques eliminate the need for ordering translucent objects. Various
order-independent transparency techniques have been researched for 3D line
sets, including depth peeling [1], multi-layer alpha blending [6], and raycast
techniques [2]. In a recent comprehensive study [3], different order-independent
transparency techniques for 3D linesets were compared, each showing differ-
ent advantages and drawbacks. Some techniques require multiple render passes,
resulting in decreased performance. Other techniques rely on complex render
pipelines supported only by newer hardware or have high preprocessing times.

2 Method Overview

We propose a novel method for voxel-based streamline rendering that achieves
fast, approximate order-independent transparency without relying on modern
render pipelines and minimal preprocessing time. The first part of this method
involves splitting the dataset into voxels, where each voxel stores streamline
segments that pass through it as described in sections 2.1 and 2.2. Next, a mesh
is generated for each voxel that connects the streamlines segments and renders
the streamlines explained in Section 2.3. This mesh generation is performed
once when reading the dataset. During rendering, we sort the voxels from back to
front every frame, solving the most noticeable transparency issues. Furthermore,
we extend this method by storing a set of precomputed line segment render
orders per voxel and selecting the closest ordering based on the current view as
described in Section 2.6 to improve the transparency accuracy within a voxel.

2.1 Voxelization

The algorithm takes a set of streamlines as input, where each streamline consists
of a sequence of points. Our goal is to divide the dataset into voxels so that each
voxel contains all line segments passing through it. In this paper, we define
a voxel as a 3D cube with a fixed position and size. The size of the voxels
used in this method differs from voxel sizes used in MRI scans or tractography
algorithms. The voxels used in our method are an order of magnitude larger
than the voxel sizes used in MRI scans to encompass more streamline points per
voxel. To obtain the voxel coordinate of a streamline point p, we first calculate its
position relative to the dataset by subtracting the minimum bound Bmin, which
is defined as the smallest coordinates contained in the dataset: prel = p−Bmin.

Transparency through Voxelization and View-Dependent Line Orders 3

Fig. 1. This figure shows a 2D representation of the voxel meshes. Each square in the
figure corresponds to a voxel. The points and lines in the figure are colored according
to their respective mesh. Some points are used twice to connect voxels, and to illustrate
this these points are shown with both colors.

This ensures that each voxel has non-negative coordinates. The voxel coordinates
v are then obtained by dividing prel by the voxel size s and taking the floor of
the resulting vector: v = ⌊prel/s⌋.

2.2 Generating Voxlines

Intuitively, grouping points of a streamline based on which voxel the points
fall in, can be seen as dividing the streamline points into several parts when a
streamline passes through multiple voxels. This can be seen in Figure 1 where
each streamline is split based on the voxel coordinate of each streamline point.
In the rest of the paper, we will refer to these parts as ”voxlines”. A voxline
is defined as a sequence of consecutive points of a streamline that is bounded
by a voxel. In this context, consecutive means that there are no missing points
between the minimum and maximum points of a group of streamline points. For
example, points with streamline indices {6, 7, 8, 9} would be considered consec-
utive, while {3, 4, 12, 13} would not.

To generate voxlines making up the streamlines we can split each streamline
in voxlines based on the voxel each point falls within. However, using only the
points in each voxline would result in gaps between voxels when rendering the
voxlines. Consider a streamline that is separated into two voxlines. If we render
these voxlines as two distinct sets of lines, there will be a gap between them
because no line is drawn between the end of the first voxline and the beginning

4 B. Osman et al.

of the second voxline. So defining the voxlines by using only the points that fall
within the voxel would cause lines that cross the voxel borders to not be rendered.
To address this issue, when generating the voxlines we add an additional point
for every voxline that does not contain the final streamline point. This additional
vertex corresponds to the next point in the streamline that falls outside of the
voxel. By doing this, we fill all the gaps between the voxlines. This is illustrated
in Figure 1 by certain voxlines having an extra point outside of their voxel
boundary and are thus part of both voxel meshes.

Algorithm 1: Voxline algorithm. Generates voxlines grouped by voxel
coordinates from the input streamlines.

Data: Input data consist of a sequence streamlines where each element
consists of a sequence of points, bound minimum Bmin of the whole
dataset and voxel size s blue.

voxelset = ∅ //Empty hashmap with voxel coordinates as keys and sets of
voxlines as values

forall streamlines S =< p0, p1, ...pn−1 > do
vp = null, i = 0, voxline =<>
while i < n do

vi = ⌊(pi −Bmin)/s⌋
if vp ̸= vi then

if i ̸= n− 1 then
voxline← voxline+ pi

if voxelset contains key vp then
voxelset[vp]← voxelset[vp] ∪ {voxline}

else
voxelset[vp]← {voxline}

vp = vi, voxline = ∅
voxline← voxline+ pi
i = i+ 1

if voxline ̸= ∅ then
if voxelset contains key vp then

voxelset[vp]← voxelset[vp] ∪ {voxline}
else

voxelset[vp]← {voxline}

Result: Set of voxlines grouped by voxel coordinates.

Algorithm 1 implements the voxelization and voxeline generation described
in Sections 2.1 and 2.2. It generates the set of voxlines and groups them based on
voxel coordinates by iterating over the streamlines. Each streamline is split into
voxlines whenever a point is found with a different voxel coordinate than the
previous point. Voxlines that do not contain the final point have an additional
point added to ensure proper connectivity between voxlines.

Transparency through Voxelization and View-Dependent Line Orders 5

2.3 Mesh generation

We generate a mesh per voxel containing all voxlines part of the voxel, which can
be rendered using the OpenGL ’lines’ primitive. A mesh consists of vertices, each
with a position and indices that define the render order of the lines. The mesh
vertices are simply defined by the points of each voxline that fall within the voxel.
We define the indices by concatenating each pair of consecutive voxline points
within a voxel. The order of these pairs in the indices determines the rendering
order of the line segments within a voxel. For now, we define this order simply
based on the dataset order. Later, we will describe a more sophisticated view-
dependent order in Section 2.6. Note that this method focuses solely on vertex
positions and indices to determine the render order of the lines. Additional vertex
information can be stored for cosmetic purposes, such as line identifiers, relative
point indices, line tangents, and render flags. However, this additional data is not
relevant for the render method as we are only concerned with vertex positions
and the render order for improved transparency.

2.4 Render Order Accuracy

Transparency issues become most apparent when distant line segments are ren-
dered in the incorrect order, specifically when line segments closer to the view are
drawn before line segments further away. To address this, we divided the dataset
into voxels, with each voxel representing the line segments passing through
its bounds. Additional line segments were included to connect different voxel
meshes. Prior to rendering the voxel, we sort them from back to front based on
the current view. This sorting provides guarantees on the render order between
any two line segments when the distance between any two consecutive stream-
line points is smaller than the voxel size. Line segments that are fully contained
within different voxel bounds will be rendered in the correct back-to-front order.
This holds true for the majority of line segments. Line segments that cross voxel
bounds may have inaccurate render order relative to their immediate neighbor-
ing voxels. However, they are guaranteed to be in the correct order relative to
line segments in non-neighboring voxels. Since we have not specifically ordered
the lines within a voxel, the render order of line segments within a voxel will
be inaccurate. Therefore, voxelization ensures that any two line segments have
an accurate render order unless they are within the same voxel or one voxel
apart for line segments crossing a voxel boundary, effectively resolving the most
significant render order issues.

2.5 Improved Transparency within Voxels

The primary issue remaining with the render order, and consequently trans-
parency, is the inaccurate rendering order within a voxel. We can take advantage
of the fact that voxelization divides the dataset into smaller datasets with simi-
lar properties to the original streamline data. Since both the original streamline
dataset and each voxel consist of sets of lines composed of consecutive points, we

6 B. Osman et al.

can apply existing rendering techniques that approximate transparency for 3D
line sets on a voxel level. Furthermore, sorting within voxels becomes more feasi-
ble because each voxel contains a smaller subset of the points. For this method,
we have developed a solution that stores different streamline orders per voxel to
improve transparency.

2.6 View-Dependent Line Order per Axis

To achieve more accurate transparency within voxels, we can sort the line seg-
ments based on the average position of the two endpoints and the current viewing
direction. However, performing this sorting process every time the view changes
would be computationally expensive, even after voxelization. Instead, we pre-
compute line render orders for a set of viewing directions. When rendering, we
select the precomputed ”closest” viewing direction for improved transparency.
The closest viewing direction is determined by calculating the distance between
each stored sorting direction and the current viewing direction using the formula
s · v−c

||v−c|| , where s represents the sorting direction, v is the voxel position, and

c is the camera position.

This method is similar to imposter rendering, a technique that precomputes
textures based on specific camera angles and then renders billboards instead of
meshes for improved performance. However, instead of precomputing textures,
we precompute line orders for a set of view directions. For the set of view di-
rections, we use the six vectors defined by positive and negative unit vectors
along each axis (X, Y , and Z). These six vectors are particularly well-suited as
they are faster to sort than others, requiring no squared distance calculations.
Additionally, these axis viewing directions align with axial, sagittal, and coronal
projections, commonly used in tractography tools.

To sort the line segments for an arbitrary direction d, we can compare
(p0+p1)

2
· d for each line segment, where p0 and p1 represent the two points

making up the line segment. Since we only use unit vectors for d, we can simplify
the comparison to a single vector component, comparing the non-zero compo-
nent of d. Additionally, we optimize the sorting by using the sum of the two line
positions instead of the average position. For example, sorting line segments for
the direction (0, 1, 0) would involve comparing the Y component of p0 + p1 for
each line segment in the voxel. To find the orders of the negative unit vectors,
we simply reverse the orders found for the positive unit vectors.

2.7 Evaluation

To evaluate our proposed approach, we generated a set of whole-brain trac-
tograms from a single participant sourced from the Human Connectome Project
[10]. A tractogram consisting of one million streamlines was constructed using
multi-shell multi-tissue constrained spherical deconvolution in MRtrix.

Transparency through Voxelization and View-Dependent Line Orders 7

Fig. 2. This figure shows two different angles of a dataset consisting of one million
streamlines rendered using our method with voxelization and axis view-dependent line
orders. Each image is divided into two halves, with the left half rendered with 0.5%
streamline opacity, and the right half rendered without transparency.

8 B. Osman et al.

Subsequently, a smaller dataset was created using TractSeg [12], resulting in
a tractogram with 140k streamlines. We implemented our render method in Neu-
roTrace (gitlab.com/Besm/NeuroTrace), a tractography visualization tool devel-
oped by the authors. We compared the visual and performance results of our
method with two popular tractography visualization tools that support trans-
parency, namely MRtrix and TrackVis. We compare them to our method with
only voxelization (basic) and the extension with axis based view-dependent line
orders (axis). All results use voxel size 10mm3, which through experimentation
was found to give a balance between performance and visual quality for both
individual bundles and whole brain tractograms.

3 Results

3.1 Qualitative

Figure 3 displays different transparency values for each method using a single
dataset. MRTrix handles transparency by blending two renders of the dataset,
one with a depth buffer and another without, based on the transparency value
of the dataset [4]. While this approach preserves line render order, it makes it
challenging to visualize the internal structures of the dataset. TrackVis renders
transparent streamlines based on the given dataset, causing noticeable render
order issues, particularly when streamline transparency is low.

In our method, by utilizing only voxelization (basic), we can observe more
information about the streamlines deeper in the brain with minimal sorting
inaccuracy. This is evident in the figure, for example, green superior longitudinal
fasciculus fibers can be seen behind the red, short superficial fibers . Increasing
transparency increases the visibility of the superior longitudinal fasciculus fibers
without distorting the fact that the short superficial fibers are in front, while
MRTrix and TrackVis have more difficulty conveying this information.

When applying axis sorting, the render order issues are slightly reduced.
Although it may be challenging to discern in the image, axis method gives a
more accurate representation of the render order compared to basic method. For
instance comparing highlighted regions in Figure 3 shows axis sorting bringing
out certain red superficial fibers in front more clearly compared to the method
without axis sorting.

3.2 Quantitative

Table 1 presents the performance comparison of our method with MRTrix and
TrackVis on two tractography datasets: one with 140k streamlines and another
with 1 million streamlines. It is worth noting that some tractography rendering
methods include a preprocessing step that converts the dataset to a different
format, aiming to reduce loading time for subsequent dataset loading. In our
method, we intentionally omitted this preprocessing step to ensure a fair time
comparison with MRTrix and TrackVis. Our implementation load the same TCK
file format as MRTrix.

Transparency through Voxelization and View-Dependent Line Orders 9

Fig. 3. Figure 3 shows a comparison of transparency between MRTrix, TrackVis, and
our method, with just voxelization (basic) and with view-dependent internal voxel order
(axis). For each method, we display the entire dataset with 50% transparency value
from the sagittal plane and highlight a portion of the data with three opacity values:
50%, 5%, and 1%. Since MRTrix does not display opacity values, three comparable
values were selected for the comparison.

4 Discussion

Voxelization and view-dependent line orders have shown promising results. The
main benefits are from the voxelization step. View-dependent line order per voxel
improve visual results at a computational cost, allowing for increased quality or
larger voxel sizes with equivalent visual quality. Although we have not achieved
the same performance as MRtrix, both our rendering and loading times are
usable and faster than TrackVis. We believe that the decreased performance is

10 B. Osman et al.

Streamlines Points Method Loading time (sec) Render times (ms)

143,999 3,770,127

MRTrix 0.8 14
TrackVis 19.8 (+2) 30

our method (basic) 3.6 26
our method (axis) 6.5 34

1,000,000 56,240,953

MRTrix 2.6 67
TrackVis 283 (+26) 253

our method (basic) 27 124
our method (axis) 143 330

Table 1. Performance comparison between different methods with transparency. Load-
ing time is measured from selecting the dataset (TCK/TRK file) to first render of the
dataset. Performance is measured on a Windows Laptop with NVIDIA GeForce GTX
1650 and Intel(R) Core(TM) i7-9750H 2.60GHz CPU. TrackVis has additional loading
time whenever modifying transparency value, which is shown in parenthesis.

caused by our implementation and is unrelated to the method outlined in this
paper. In our implementation loading a dataset without voxelization has similar
performance to loading with voxelization, indicating suboptimal performance
in dataset loading independent of our method. The tractography visualization
tool we used to implement this method, NeuroTrace, is primarily focused on
functionality and experimentation rather than performance optimization. We
aim to improve performance in future work.

Currently, we manually determine the voxel size and whether to generate
the view-dependent render orders. We are exploring the possibility of utilizing
metadata of the dataset, such as step size and total point count, to automatically
determine the parameters of our method. We are experimenting with varying
transparency per streamline to highlight specific parts of the dataset and utilizing
the benefits gained from voxelization in novel ways. We aim to explore these
aspects in future work.

4.1 Different sorting orders

Regarding the set of precomputed view direction line orders, we have investi-
gated two approaches: per-axis sorting and pseudo-random sorting. The per-axis
method used in this work involves generating two orders per axis. For each voxel,
we store line render orders in both ascending and descending order for each axis.
The pseudo-random sorting approach involves sorting points based on pseudo-
random directions that differ for each voxel. Per-axis sorting offers certain bene-
fits mentioned previously, mainly performance, as axis directions do not require
(squared) distance calculations while sorting on any other direction does. Ad-
ditionally, these axis viewing directions align with axial, sagittal, and coronal
projections, which are common viewing angles in tractography tools. However,
we encountered an issue with voxelization and per-axis method where moving

Transparency through Voxelization and View-Dependent Line Orders 11

Fig. 4. This figure illustrates the voxel line ordering accuracy for two different camera
angles. Each voxel is colored according to the absolute value of the direction for the
RGB values. This direction differs per column. The second column displays the ’optimal
sorting direction,’ which is defined as the normalized direction from the camera to
the voxel center. The third column shows the nearest voxel order direction using axis
orderings. The fourth column shows the nearest voxel sorting direction using 64 pseudo-
random sorting directions.

the camera tends to update certain lines of voxels simultaneously, causing visual
jittering when rotating the viewing direction while using high streamline opacity
(besm.gitlab.io/voxlines/videos). Using the pseudo-random direction mitigates
this issue but has less accurate results for the most common viewing direction
and is more computationally expensive.

In Figure 4, we demonstrate the difference between axis-based orders and
pseudo-random direction orders. We can observe that the axis-based order is
more accurate, when the dataset is viewed from one of the sides. Pseudo-random
sorting performs worse in these cases. However, when considering arbitrary view-
ing directions, it outperforms the axis-based approach. Furthermore, when mov-
ing the camera, the pseudo-random method exhibits less visual jittering. How-
ever, the loading time for the pseudo-random method is worse. In future work,
we aim to explore different sorting orders to find a balance between visual quality
and performance.

Conclusion

In this work, we have proposed and implemented a novel transparency method
that improves tractography visualizations, allowing the capturing of deeper struc-
tures in tractograms. We demonstrate improved transparency and comparable
performance to existing tractography tools. Our method achieves this by provid-
ing a novel approximate transparency, which enhances the visibility of structures
in the deeper regions of the brain compared to existing methods.

12 B. Osman et al.

References

1. Everitt, C.: Nvidia corporation: Order-independent transparency
(2001), https://developer.download.nvidia.com/assets/gamedev/docs/
OrderIndependentTransparency.pdf

2. Kanzler, M., Rautenhaus, M., Westermann, R.: A voxel-based rendering pipeline
for large 3d line sets. IEEE Transactions on Visualization and Computer Graphics
25 (01 2018). https://doi.org/10.1109/TVCG.2018.2834372

3. Kern, M., Neuhauser, C., Maack, T., Han, M., Usher, W., Westermann, R.: A
comparison of rendering techniques for 3d line sets with transparency. IEEE
Transactions on Visualization and Computer Graphics 27(8), 3361–3376 (2021).
https://doi.org/10.1109/TVCG.2020.2975795

4. MRtrix3: Add support for visualizing tractography data (Issue #177), https://
github.com/MRtrix3/mrtrix3/issues/177

5. Rheault, F., Houde, J.C., Descoteaux, M.: Visualization, interaction and tractome-
try: Dealing with millions of streamlines from diffusion mri tractography. Frontiers
in Neuroinformatics 11 (06 2017). https://doi.org/10.3389/fninf.2017.00042

6. Salvi, M., Vaidyanathan, K.: Multi-layer alpha blending. pp. 151–158 (03 2014).
https://doi.org/10.1145/2556700.2556705

7. Schultz, T., Sauber, N., Anwander, A., Theisel, H., Seidel, H.P.: Virtual klingler
dissection: Putting fibers into context. Computer Graphics Forum 27(3) (2008).
https://doi.org/10.1111/j.1467-8659.2008.01243.x

8. Tax, C., Chamberland, M., van Stralen, M., Viergever, M., Whittingstall, K.,
Fortin, D., Descoteaux, M., Leemans, A.: Seeing more by showing less: Orientation-
dependent transparency rendering for fiber tractography visualization. PloS one
10, e0139434 (10 2015). https://doi.org/10.1371/journal.pone.0139434

9. Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M.,
Christiaens, D., Jeurissen, B., Yeh, C.H., Connelly, A.: Mrtrix3: A fast, flexi-
ble and open software framework for medical image processing and visualisation.
NeuroImage 202, 116137 (2019). https://doi.org/https://doi.org/10.1016/
j.neuroimage.2019.116137, https://www.sciencedirect.com/science/article/
pii/S1053811919307281

10. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil,
K.: The wu-minn human connectome project: An overview. NeuroImage 80, 62–79
(2013). https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.05.041,
https://www.sciencedirect.com/science/article/pii/S1053811913005351,
mapping the Connectome

11. Wang, R., Benner, T., Sorensen, A., Wedeen, V.: Diffusion toolkit: A software
package for diffusion imaging data processing and tractography. Proc Intl Soc Mag
Reson Med 15 (01 2007)

12. Wasserthal, J., Neher, P., Maier-Hein, K.H.: Tractseg - fast and accu-
rate white matter tract segmentation. NeuroImage 183, 239–253 (2018).
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.07.070, https://
www.sciencedirect.com/science/article/pii/S1053811918306864

https://developer.download.nvidia.com/assets/gamedev/docs/OrderIndependentTransparency.pdf
https://developer.download.nvidia.com/assets/gamedev/docs/OrderIndependentTransparency.pdf
https://doi.org/10.1109/TVCG.2018.2834372
https://doi.org/10.1109/TVCG.2018.2834372
https://doi.org/10.1109/TVCG.2020.2975795
https://doi.org/10.1109/TVCG.2020.2975795
https://github.com/MRtrix3/mrtrix3/issues/177
https://github.com/MRtrix3/mrtrix3/issues/177
https://doi.org/10.3389/fninf.2017.00042
https://doi.org/10.3389/fninf.2017.00042
https://doi.org/10.1145/2556700.2556705
https://doi.org/10.1145/2556700.2556705
https://doi.org/10.1111/j.1467-8659.2008.01243.x
https://doi.org/10.1111/j.1467-8659.2008.01243.x
https://doi.org/10.1371/journal.pone.0139434
https://doi.org/10.1371/journal.pone.0139434
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116137
https://www.sciencedirect.com/science/article/pii/S1053811919307281
https://www.sciencedirect.com/science/article/pii/S1053811919307281
https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.05.041
https://www.sciencedirect.com/science/article/pii/S1053811913005351
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.07.070
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.07.070
https://www.sciencedirect.com/science/article/pii/S1053811918306864
https://www.sciencedirect.com/science/article/pii/S1053811918306864

	Voxlines: Streamline Transparency through Voxelization and View-Dependent Line Orders

